

Comparator Design Optimization

Ray Xu Jan 27, 2017

Three Designs

- Three Designs
 - Double-tail Comparator 1 ("DTC1")
 - Single-phase DTC (Chen-Kai's design)
 - Double-regenerative DTC ("DTC2") (new design)
- Transistor-level Optimization
- Testbench
- Performance Comparison
- Summary of Design Tradeoffs

Double Tail Comp. 1

- The "original" double-tail design
- CLK=0 \rightarrow Pre-charge capacitance on nodes fn and fp to VDD
- CLK=1 \rightarrow fn and fp discharge
- During discharge: $|V_{\rm fp} V_{\rm fn}|(t) \propto \frac{\Delta V_{\rm IN} \times g_{m1,2} \times t}{C_{\rm fp,n}}$
- Input with the lesser voltage discharges first → its respective output goes to zero on the second-stage x-inverter.

Single-Phase DTC

- Structurally similar to DTC1; same theory of operation
- $\overline{\mathrm{CLK}}$ is replaced with one additional PMOS & NMOS
- The additional NMOS & PMOS equate to an effective gm boost of 2x ~ 3x in the second stage
 - \rightarrow 2x ~ 3x faster response time

Double-Regenerative DTC

- Design proposed in [1]
- First stage is replaced with a regenerative stage
- Unlike the original DTC, $V_{\rm fn}$ and $V_{\rm fp}$ discharge rate is exponential

$$\{|V_{\text{fp}}-V_{\text{fn}}|\}(t) \propto \Delta V_{\text{IN}} \exp\left[\frac{g_{m1,2} \times t}{C_{\text{fp,n}}}\right]$$

• M_{sw1} & M_{sw2} used to avoid static DC flow

DTC1 Guidelines

First stage:

- Larger M1, M2 \rightarrow faster decision time but more power
- If discharge rate is too high → risk of false latching (high noise); inadequate $\{|V_{fp}-V_{fn}|\}$
- Large M_{tail1} , $M_{tail2} \rightarrow \text{low } V_{DS,ON}$
- Don't use min length for analog transistors (L = 130 nm)
- Even number of fingers & multiplier
 for easier matching in layout (pref. m=8)

DTC1 Guidelines (cont.)

Second stage:

- Min size inverters → low cross-over power consumption
- g_{mR1} > g_{m9} and g_{mR2} > g_{m10} for stronger sensitivity to positive feedback, but slower response time
- Large C_{fp,n} → less noise; less false latching, but slower response time (higher time const., lower kT/C noise)
- Buffer on Outn and Outp to prevent perturbing the positive feedback on the min-size inverters

Double-Regen. Guidelines

First stage:

- Regeneration in 1st stage → allows larger M1 & M2 (for less false-latching, faster response time, etc) without as much of a power penalty
- Weaker MC1 & MC2, but stronger Msw1 & Msw2 \rightarrow keeps power low

Second stage:

- g_{mR1} and g_{mR2} need not to be as large due to exponential growth
- MR1 & MR2 now mostly determined by max. false-latching (noise) spec.
- Move most of $C_{\mathrm{fp,n}}$ to M3 and M4
- Faster response time

Testbench

- CLK: 320 MHz, 1000 cycles
- V_{IN+} = 600.0mV; V_{IN-} = 600.4 mV (recall 1LSB \approx 977 uV)
- Two min-sized inverters (buffer) placed on each output
- 5 fF load on each output
- Transient sim, conservative accuracy, trans. Noise
 - Fmin = 1 Hz, Fmax = 100 GHz, Seed = 1, Scale = 1
- Input-referred noise spec [3]:

$$P[Incorrect] = erfc \left| \frac{\Delta V_{IN}}{\sigma \sqrt{2}} \right|$$

TEXAS The University of Texas at Austin Performance Comparison

	DTC1	Single-phase DTC (Chen-Kai's design)	Double-Regen (DTC2)
Avg. Power @ 320 MHz	103.5 μW	78.83 μW	102.3 μW
Prop. Delay $t_{\scriptscriptstyle CLK ightarrow OUT}$	210 pS	130 pS	127 pS
P[correct] n=1000	96.6 %	91.9 %	96.5 %
			97.2 % @ 120 μW
Input-referred σ ("input-ref. noise")	189 μV	229 μV	190 μV
$\mathbf{\Sigma C}_{\mathrm{fn}}$	98.178 fF	24.07 fF	69.37 fF
Input transistor gate area (pre-layout), per transistor	1.04 µm ² L = 130 nm	2.88 μm² L = 60 nm	4.16 μm ² L = 130 nm

Summary

- DTC1 has too many trade-offs relying on a few transistors
- Adding regenerative first stage allows for more flexibility
 - More transistors to play around with...
 - Exponential growth, as opposed to linear, in first stage eases second stage requirements
- Can be optimized even further for a single parameter instead of overall performance...

To-do

- Monte Carlo/corner simulations
- Further optimization?
- Optimization of other ADC components?
- Design of reference buffer
- Start layout (w/ Chen-Kai)
- Things to think about:
 - Layout: use of waffle/annular ring transistors for radhardness?
 - Fail-safe/redundancy circuitry to mitigate SEE/SEU's?
 - Additional circuits to fit into tapeout to study SEE/SEU?
 (probably not ADC related)

Reference

- 1. S. B. Mashhadi and R. Lotfi, "Analysis and Design of a Low-Voltage Low-Power Double-Tail Comparator," *IEEE Trans. On VLSI*, Vol. 22, No. 2, February 2014
- 2. Y. Lim and M.P. Flynn, "A 1mW 71.5dB SNDR 50 MS/S 13b fully differential ring-amplifier-based SAR-assisted pipeline ADC," in *Proc. IEEE ISSCC. Dig. Tech. Papers*, Feb. 2015, pp. 1–3.
- 3. https://everynanocounts.com/2013/06/25/noise-effect-on-the-probability-of-comparator-decision/